Definitions | t T, left + right, P Q, Dec(P), x:A B(x), x:A. B(x), IdLnk, (x l), P  Q, l_disjoint(T;l1;l2), Knd, MaName, E, (e <loc e'), e loc e' , (e < e'), e c e', x:A B(x), x:A. B(x), e<e'.P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e [e1,e2).P(e), e [e1,e2).P(e), e [e1,e2].P(e), e [e1,e2].P(e), e (e1,e2].P(e), b, e  X, ES, Type, AbsInterface(A), , sys-antecedent(es;Sys), type List, a < b, no_repeats(T;l), P & Q, L1 L2, <a, b>, adjacent(T;L;x;y), E(X), {x:A| B(x)} , False, A, increasing(f;k), let x,y = A in B(x;y), t.1, case b of inl(x) => s(x) | inr(y) => t(y), Top, ||as||, #$n, , True, T, b | a, a ~ b, a b, a <p b, a < b, A c B, x f y, x L. P(x), ( x L.P(x)), r s, r < s, q-rel(r;x), Outcome, SqStable(P), P   Q, a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), strong-subtype(A;B), f g, chain-consistent(f;chain), ff,  b, tt, x <<= y, p =b q, i <z j, i z j, (i = j), x =a y, null(as), a < b, a < b, [d] , eq_atom$n(x;y), q_le(r;s), q_less(a;b), qeq(r;s), a = b, a = b, deq-member(eq;x;L), e = e', p   q, p  q, p  q, {T}, SQType(T), s ~ t, EState(T), a:A fp B(a), , EqDecider(T), Unit, EOrderAxioms(E; pred?; info), kindcase(k; a.f(a); l,t.g(l;t) ), loc(e), kind(e), Msg(M), , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', constant_function(f;A;B), SWellFounded(R(x;y)), pred!(e;e'),  x,y. t(x;y), !Void(), x:A.B(x), S T, suptype(S; T), first(e), pred(e), x.A(x),  x. t(x), x dom(f), loc(e), Id, s = t, f(a), last(L), hd(l), X(e), if b then t else f fi , x << y, x before y l, Atom$n, l[i], [car / cdr], P  Q |